Designing a Security Evaluation tool for Blockchain Smart Contracts

Technology stack

- VueJS as JavaScript framework
- Flask to host trained model as a service
- Keras as a neural-network library for model training
- Infura for access to Ethereum main-net

Smart Contract Vulnerabilities

Past security incidents of smart contracts on the Ethereum blockchain has proved to be disastrous - incurring losses of upwards of a few hundred million USD to date. In this project, we aim to contribute to the security landscape of smart contracts by proposing an efficient smart contract vulnerability detection system.

Application of Deep Learning

A long-short term memory (LSTM) trained on approximately 1 million contracts serves as a classifier for identifying security threats. This approach takes less than 1/10 the time required for an analysis by prominent symbolic analysis tools while achieving high test accuracies, allowing us to classify smart contracts at scale.

Classification of single contracts via contract address or source code

Classification of multiple contracts from Ethereum main-net

Vulnerability scores indicating model’s confidence

LSTM Performance Metrics

- Precision score: 64.11%
- Test Accuracy: 99.40%
- F1 score: 74.81%
- Recall score: 89.81%
- ROC AUC score: 94.69%

Web Application System Architecture

Student: Han Xing Jie Supervisor: Dr Sourav Sen Gupta